UV-3600 Plus — высокочувствительный спектрофотометр для работы в УФ, видимом и ближнем ИК-диапазоне.
Высокая чувствительность
Компания Shimadzu разработала уникальный спектрофотометр для работы в УФ, видимом и ближнем ИК-диапазоне спектра. Спектрофотометр UV-3600 Plus оснащен тремя детекторами: ФЭУ для работы в ультрафиолетовой и видимой области спектра, полупроводниковый InGaAs и охлаждаемый PbS детекторы для работы в ближнем ИК-диапазоне. Для обычных спектрофотометров, имеющих только два типа детекторов (ФЭУ и PbS), характерна потеря чувствительности в области перехода от видимой области спектра к ИК-диапазону. В случае UV-3600 Plus, благодаря наличию InGaAs детектора, обеспечивается высокая чувствительность во всем рабочем диапазоне, а уровень шума не превышает 0,00003 Abs при 1500 нм. В дополнение к основному блоку спектрофотометра многоцелевое кюветное отделение, предназначенное для работы с образцами больших размеров, а также интегрирующая сфера оснащены тремя детекторами, что позволяет с высокой чувствительностью проводить измерение твердых образцов.
Высокое разрешение, крайне низкий уровень рассеянного света, широкий спектральный диапазон
Высокопроизводительная оптика прибора позволяет достичь ультра-низкого уровня рассеянного света (макс. 0,00005 % при 340 нм) с высоким разрешением (максимальное разрешение: 0,1 нм). Широкий спектральный диапазон от 185 до 3300 нм позволяет работать не только в УФ и видимом диапазонах спектра, но и в ближнем ИК-диапазоне, и как результат, открывает возможности по решению широкого круга задач.
Большой выбор дополнительных аксессуаров
Многофункциональное кюветное отделение с тремя детекторами и интегрирующая сфера позволяют проводить высокочувствительные измерения твердых образцов. Приставки абсолютного зеркального отражения ASR-серии предназначены для получения высокоточных результатов измерения коэффициента отражения. В дополнение ко всему вышеперечисленному, доступны разнообразные держатели для микрокювет и держатели с возможностью регулирования температуры, что позволяет использовать спектрофотометр в разнообразных областях.
Измерение коэффициента пропускания объективов и линз
Tакие устройства как мобильные телефоны, цифровые камеры и камеры слежения оснащены разнообразными объективами и линзами. Коэффициент пропускания линзы является одним из факторов, который определяет характеристики объектива. Однако, поскольку линза сама фокусирует свет, то представляет собой очень сложный образец для проведения измерений и получения достоверных результатов.
Наличие у линзы фокальной плоскости приводит к тому, что свет, проходящий в спектрофотометре при измерении базовой линии, может отличаться от света, прошедшего через линзу во время измерения из-за рефракции.
В таких случаях, для более точных измерений рекомендуется работать с интегрирующей сферой, которая позволяет собрать весь свет, проходящий через линзу. Помимо этого, использование интегрирующей сферы, работающей в режиме пропускания, в комплекте с устройством BIS-603, способствует уменьшению ошибок измерений. Кроме того, с помощью V-образной платформы, входящей в стандартную комплектацию многофункционального кюветного отделения MPC-603, можно проводить измерения коэффициента пропускания линз различной длины и размеров. Как результат, MPC-603 и BIS-603 являются идеальным сочетанием для анализа линз и объективов.
Преимущества использования двойного монохроматора с голографическими решетками
Для UV-3600 Plus характерно использование голографических дифракционных решеток в двойном монохроматоре, которые предназначены для достижения высокой эффективности и низкого уровня рассеянного света. Помимо этого, голографические дифракционные решетки используются для диапазонов длин волн, которые по своей природе имеют низкую энергию, или для которых характерна более низкая чувствительность детектора. Система G-G, подразумевающая использование решеток и для пред-монохроматора, и для основного монохроматора, обеспечивает низкий уровень рассеянного света при постоянном оптимальном разрешении 0,1 нм для УФ и видимого диапазона спектра и 0,4 нм для ближней ИК-области.
Дополнительное программное обеспечение:
Опциональные приставки, используемые для проведения измерений:
Пример использования ISR-60
Определение ширины запрещенной зоны
Исследование солнечных элементов и фотокаталитических материалов зачастую включает в себя измерение ширины запрещенной зоны, которая является одной из основных физических характеристик материалов. Ниже приведены спектры диффузного отражения трех полупроводниковых материалов, используемых при производстве солнечных батарей, полученные с помощью интегрирующей сферы ISR-603. Края поглощения, где длина волны отражения уменьшается, различаются в зависимости от типа образца. Эти различия указывают на разницу ширины запрещенной зоны* образцов. Значения ширины запрещенной зоны образцов рассчитаны с помощью метода Тауца и были определены как 1,63 эВ для GuGaSe2 (красная линия) 1,27 эВ для Culn0.5Ga0.5Se2 (синяя линия) и 0,99 эВ для CuInSe2 (черная линия).
* Ширина запрещенной зоны представляет собой разность энергий между верхней валентной зоной, заполненной электронами, и дном зоны проводимости, лишенного электронов.Диапазон длин волн спектрофотометра UV-3600 Plus является чрезвычайно эффективным для расчета ширины запрещенной зоны.
* Образцы любезно предоставлены лабораторией WADA, факультет науки и технологии университета Ryukoku.
Диаметр интегрирующей сферы составляет 150 мм. Хорошо подходит для измерения спектров отражения таких образцов как порошки, бумага и ткани, а также для измерения цветности. Благодаря высокой стабильности исключается влияние состояния поверхности образца, что эффективно при анализе твердых образцов с высокой величиной рассеянного света, т.е. попросту характеризующихся неровной поверхностью. Помимо спектров отражения данную приставку можно использовать и для измерения спектров пропускания растворов и твердых проб.
Пример использования ISR-1503
Измерение пропускания толстолистового прокатного стекла
Толстолистовое прокатное стекло используется при производстве солнечных батарей. При проведении анализа с интегрирующей сферой небольшого диаметра могут быть получены некорректные результаты в силу большого шага при переключении детектора на последующую длину волны. Использование интегрирующей сферы ISR-1503 позволяет избежать этих проблем и получать одинаковые результаты даже при условии смещения образца на 0, 45 и 90°.